Speaker
Description
Ground-based observations of spacecraft signals have been used to study space weather. However, single spacecraft measurements observed from the Earth have limitations in studying the structure and evolution of solar plasma as they are unable to differentiate spatial and temporal variations. To overcome this limitation and improve our understanding of interplanetary scintillation, we simultaneously observed radio signals transmitted by two co-orbiting spacecraft: the ESA Mars Express (MEX) and the Chinese National Space Administration Tianwen-1 (TIW-1). We conducted the observations from April to November 2021 using the University of Tasmania’s VLBI radio telescopes at 8.4 GHz. We employed the Planetary Radio Interferometer and Doppler Experiment (PRIDE) technique to determine the topocentric Doppler measurements and residual phase of the carrier signal. These observables were used to quantify the phase fluctuations of the spacecraft signals caused by solar wind and hydrodynamic turbulence in the interplanetary medium. The measured phase fluctuations RMS from both spacecraft show small differences which are caused by factors such as the spacecraft’s motion, onboard electronics, and variations in the uplink signal path through Earth’s ionosphere. These fluctuations decrease with solar elongation and correlate with solar radio flux at 10.7 cm (2800 MHz), indicating solar activity. The estimated total electron contents along MEX and TIW-1’s radio lines of sight are similar, with higher values at lower solar elongations. Simultaneous multi-spacecraft observations also enable RFI characterization, frequent spacecraft performance comparisons, and investigation of solar activity effects on spacecraft performance and scientific outcomes.
Talk category | data science (contact d.huppenkothen@uva.nl) |
---|---|
Preference for a talk or poster | Talk |