# The importance of LOFAR in characterising the nanohertz gravitational wave background

## Aurélien Chalumeau

PostDoc. researcher, <u>chalumeau@astron.nl</u> ASTRON, the Netherlands Institute for Radio Astronomy

On behalf of...



Link to Gslides





#### Netherlands Astronomy Conference 2025 Berg en Dal, the Netherlands - 26 March 2025



erce European Research Council

nstitute for Radio Astronor

#### Pulsars

Neutron stars with strong magnetic fields that spin rapidly and emit radio beams along their magnetic axes



#### Pulsars

Neutron stars with strong magnetic fields that spin rapidly and emit radio beams along their magnetic axes



## Precision pulsar timing



### Precision pulsar timing



#### Timing residuals



 $RMS_{rés} \sim 100 \text{ ns} - 5 \mu \text{s}$ , with 10 - 30 yr of data !







<u>Main source</u>: The supermassive ( $M \ge 10^8 M_{\odot}$ ) black hole binaries



<u>Main source</u>: The supermassive ( $M \ge 10^8 M_{\odot}$ ) black hole binaries



## Results from the European and the Indian PTAs in 2023





## Results from the European and the Indian PTAs in 2023



#### IPTA 2024 - Comparing results against other PTAs

- <u>Agazie et al. 2024</u> (<u>10.3847/1538-4357/ad36be</u>)
- Perform rigorous checks from published results & re-analyzing data
- Comparing
  - GWB & noise measurements
  - GWB sensitivity
  - Significance for HD correlations
- Forecasting IPTA significance





#### Some slight issues ?

#### Some interesting cases for the noise properties



#### More issues ? Different results for different EPTA data set versions



#### More issues ? Different results for different EPTA data set versions



#### The time-varying dispersion measure



#### The time-varying dispersion measure



<u>We need low-freq. data</u>  $\rightarrow$  <u>LOFAR</u> & <u>NenuFAR</u> !

## Combine data from EPTA DR2 & LOFAR/NenuFAR

#### Combining the second data-release of the European Pulsar Timing Array with low-frequency pulsar data



## Combined data EPTA DR2 / InPTA DR1 + LOFAR & NenuFAR



19

### **Results - DM variations**



## Results - Red noise





#### Results - RN vs. DMv





## Results - Model selection between chosen components



## Results - Solar winds



## **Conclusions & Prospects**

- LOFAR & NenuFAR allowed to significantly improve the characterization of noise in the EPTA/InPTA data
- But it also reveals some limitations in the current models
- Work in progress...
  - o to apply advanced SW models
  - to better understand IISM properties with simulations (see Ruggero Valdata's poster !)
  - to better understand IISM properties with real data (see Selah Melfor's poster !)
- The upcoming IPTA DR3 will include LOFAR, NenuFAR & CHIME data to also improve the robustness of the GW measurements

## Thank you !

## **Results - DM variations**

DM





# Results - Red noise





## Building the noise model - The time-varying scattering delays (secondary effect)



## Results - Scattering variations ?



## The European Pulsar Timing Array (EPTA)



#### The International Pulsar Timing Array(s)



## Pulsar Timing data with GWs + noise



Time-varyingTime-varyingSpin noise ?dispersion from thedispersion from theUnmodelledIISM ?Time-varyingSolar winds ?objects ?scattering from thesystem barycenterIISM ?IISM ?position ?

Stochastic GWB + deterministic signals ?

## Constraining the GWB with PTAs



## The SMBHB signal in the PTA band

From a large population of SMBHBs, two main types of signals:

- The Gravitational Wave Background (GWB)
- The Continuous Gravitational Waves (CGWs)

For a GW-driven population of circular SMBHBs:

$$h_c^{
m GWB} \propto f^{-2/3}$$
 phinney 2001

In the strong-signal regime, sensitivity towards GWB scales as

$$\mathrm{S/N}^{\mathrm{PTA}} \propto N_{psr} \sqrt{T} \left( \sqrt{c \times \Delta f_{\mathrm{rad}}} \right)^{1/\gamma}$$

Siemens et al. 2013 + Lorimer & Kramer 2004



## Results from the European and the Indian PTAs in 2023

"Free-spectrum": Estimation of the PSD at each frequency bin

 $S(f) = \rho(f)$ 



- Only **few frequency bins** are **well constrained**
- Excess of **power** at **low frequencies**
- Consistency with empirical SMBHB models

#### Current challenges for PTAs

Some crucial points to understand: Measurement vs. expectations ?





MSPs look very stable, but some effects impact the observed regularity...



 $\ldots$  e.g., dispersion from the interstellar medium

 $\delta t \propto 1$  /  $u^2$ 



<u>Pulsar timing</u> => fit a timing model to predict <u>times of arrival</u>, minimizing the <u>timing residuals</u>

